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1. INTRODUCTION

This paper is concerned with the determination of error bounds for
bicubic and biquintic spline interpolation over rectangular polygons. We
show that for smooth functions, the rate of convergence of the bicubic and
biquintic spline interpolants constructed in [12] on simple rectanguiar
polygons {explicitly: L-shaped and U-shaped regions) is of fourth order in
the bicubic case and of sixth order in the biquintic case, independently of
mesh ratios. This agrees with the results of Carlson and Hall {7] concerning
bicubic spline interpolation on a rectangle. For functions fe C% they prove
the fourth-order convergence of bicubic spline interpolants over rectangles,
independently of mesh ratios. In addition, they obtain explicit bounds on
the constants involved. If one does not insist on such expiicit bounds, one
can easily obtain analogous results in the biquintic case using tensor products
and the results of de Boor [3, 4].

The results of Carlson and Hall [7] in turn exiend the univariate result
that for fe C®P{q, b], p = 2, 3, one obtains the error bound of best possibie
order

I = L2090 e < K27 ([feP .,  O0<j<p, (i1

N’

where 77/ is the spline interpolant of degree 2p — 1 to fsatisfying

(L2 (x) = f(xy), i=0,.. M, (1.2}
T (x) =fx),  P=0M; j=1.op—1 (L3

where # = max; | x,.; — X; |, and K is a constant which is independent of f
and 7. For p = 2, this was proved in [2], [4], [9], and for p = 3 in [41.

In this paper, we let # be a rectangular polygon and R = [g, b] X [¢, di
be the smallest rectangle containing #. Let w =, X m, be a rectangular
mesh defined on R containing all corners of # and R as mesh points. We
also set x; =4, x5y = b, ¥ == ¢, Yy = d. Let S?*P{(Z, =) denote the subspace
of piecewise polynomials, or splines, on « (or more precisely the restriction
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of 7 to %) which are of degree 2p — 1 in each variable and which belong
to C®r-2.2r-2(7), the class of functions /" defined on & with f%7 continuous
on #,0 < i,j<2p—2.In[12] a linear interpolation projector I? » onto
S%P(%, w) was constructed having the property that the spline interpolant
determined by this projector can be characterized by variational properties.
This generalizes the well-known result concerning spline interpolation in one
variable [1], and its extension by tensor products to rectangles [11, 12].
Except along edges and corners of # which do not coincide with the
rectangle R, the interpolation conditions which define the interpolant of [12]
are identical to the conditions defining the spline interpolant of the same
degree on R obtained from univariate spline inferpolation by taking tensor
products. Along these edges and corners, simple interpolation to normal
and cross-derivatives must be replaced by certain linear combinations of
interpolation to values and derivatives in order to obtain an interpolant
in S27(%, ) which can be characterized by variational properties. A precise
description of these interpolation conditions is given in Section 2. Also in
Section 2, we extend to general rectangular polygons a result for L-shaped
regions based on the variational property obtained in [11, Theorem 5]. We
do this not only for its own interest but because most of the estimates used to
prove this result will be needed to prove our main results in Sections 3 and 4.

2. CONVERGENCE RESULTS BASED ON THE VARIATIONAL PROPERTY

On C»?)(R) we define the inner product

(o) =gl + 3 Y UG 7)lleE 3l @.1)
i=1 j=1
where
b & D b
gl = [ [ Fomee ) g0 00 ) dedy + 3 [ F0060 7) 806, 5)
- i de OOX;, y) g0, ¥) dy, 2.2)

where the X; and y; are chosen so that (X;, y;), | < i, j < p, are contained
in #. The completion of C!##)(R) with respect to the inner product (2.1) is
the Hilbert space R%'? with the properties

fePeCiRl, i<p, j<p,

JF@L0(x, y;) is abs. cont., f?9(x, 7,) € L?{a, b], j=1,..,p,
FO-r-1(X,, y) is abs. cont., f (%, y) € L¥c, d], i =1,.,p,
fr-Lr-1 ig abs. cont., f'7-? € L?[R].
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SPLINE INTERPOLATION OVER POLYGONS

Let E be the linear map on C'#7:?(%) given by

S on #
=1 o R

o
)
[¥%]

St

where V is a linear map satisfying

AUANE

ent  ~ omt’

on &% N HR\Z), where d/dn denotes the normal derivative. Thus
E[C7- 2 C RZ*?. On C»2(Z) we define the inner product

(f, 9« = (Ef. Eg). (2.4

»—/

The completion of C7*}(%) with respect to the inner product (2.4) is the
Hilbert space #7?-?, The linear operator £ ther: can of course be extended by
continuity to an operator defined on #?-»,

DeriNiTION. We say that E defines a minimai extension cf #%? io RL*
if its left inverse F defined by

Ff=Flg

is norm reducing.

We now define the spline interpolant 17,7 The functionals, or inter-
polation conditions, which determine the projector 1”5 are defined in terms
Gf the minimal extension E and the functionals which determine the projector

+r = I @ I7 with range S*(R, ). Here I7 is the projector defined by
(L.2)y-(1. 3) Let the functionals 3 be defined bv

8¢ = g%, j<wp
with §, = 89,
The functionals which determine the spline interpolant 77 , f are
={AQulred;, pedy,
where
Ay = 8,350 BT U (877
and

/1 — {3 }N U {5(])}1‘1 U {5(1)\:0——1

Let m == dim $?#(#, ) and assume that the mesh 7 is suitably refined so
that dim $22(Z, ) << dim S*?(R, 7). See {6, Section 3] for a discussion of



116 LOIS MANSFIELD

this restriction. The spline interpolant I? 5/ to fe Z”# satisfies the inter-
polation conditions

I‘LLI:,.%f: V’zf; i = 1,..., m, (2-5)

where {u;}7" is any set of m linearly independent functionals from the set
{AE | Ae A4}. The set {u 37 can always be chosen to include interpolation to
values at each mesh point of # which is contained in # plus certain linear
combinations of these functionals and certain functionals associated with
interpolation to derivatives on the boundary of #. For the case of the
L-shaped region these interpolation conditions are explicitly given in [12,
Theorem 2]. For the U-shaped region they are explicitly given in Section 4.
It is shown in [12, Section 6] that the linear projection I? 5 f of f € #7-? onto
S2r(Z, ) satisfying (2.5) uniquely minimizes [v, v, = [Ev, Ev] among all
v e A7 7P satisfying
Wit = pif, i=l..,m

We are now ready to state and prove the main result of this section. Let
Tp = MAX; | X0y — X; |, 7y =MaX; | ¥y — ;| and 7 = max{w,,7,}. In
addition let

gl == supi| g(t, w)|: (¢, u) € ).

THEOREM 1. Let fe #%* and v = f — I? »f. Then there exists a constant
K independent of f and = such that

[ 769 | < KAP-ORRES, EFJ2, k= max{i,j}, 0<i, j<p—1
(2.6)

Remark. The theorem will be proved by showing that for each (x, y) € %,
[ — O.»)r]%? can be bounded, using a modification of the Sard kernel
theorem, independently of x and y in terms of #*~%/2—% where Q¢ is a
projector defined on R with Q, i = 0. All of the bounds established in
the proof except for the final inequalities will be needed to establish our
results in Sections 3 and 4 concerning spline interpolation on L-shaped and
U-shaped regions.

Proof of Theorem 1. Let P, be the linear projector of Lagrange inter-
polation onto £,_,, the space of polynomials of degree p — 1 or less,
defined by

(P1g)(x) = Z I{x) g(x5), 2.7
where . .
I{x) = H x—X)x:—%), 1<i<p (2.8)

Gt
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Likewise, let P, be the linear projector onto #,_; defined by

P)0) = 3 L) g5,

=1

Py
[\
N

where

D
W) =1 =G — 5. 1<j<p 2.:0)
i=1

i#j

Let (x, ) be an arbitrary point in #. Then by the Peano kernel theorem,
» R Y] ) ;
rCx, ) = (P ® PYEN, ) + Y I3 | RCo, (EN (1, 3) ds
=1 Ja

310 [ RO B 0 d

i=1
nb pd
+ f R(x, 1) R(y, w)(Ery®» (1, u) dt du (210
va [
where
R(x, 1) = (1 — Py glx, 1),
gl ) = (x ~ )7 (p — )Y,
and

R(y9 u) = (1 - Pz)(y) g(}’a “):
y,u) =y — w7 (p — DL
There exists (x, , y,) €7 such that (x, y) € [x, , X,up1] X [¥us Virp1) C .
Let
Q= Q@ =01,
where @ is the projector defined by
-1

Ow(x) = Z ci(x) v(X,15);

i=0
where

p—1
Si(x) = H (X - xv+j)/(xv+i - xv+j)= i= Os"':p -1
g
and @, is the projector defined by
=1

Q:U(J’) = Z Eﬂ(y) U(yu-f-i)ﬁ

j=0
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where

p~1
&) = [l O = 3d/(urs = Yurds T =Opesp — 1.
i
Then using Lemma 2 of [I11] which is a minor modification of the Sard
kernel theorem [13, p. 200], r/(x, y) can be expressed as

Ed b
re(s,y) = Y. [ 6ot 0yi(Ky nalx, , ONENO (¢, 3,) dt
n=l"a

b a
+ 3 f 0H[0xt 8y (Kye—y, (%, ¥, W)(EF)O? (Xy, , u) du
E=1%¢
b sd
+ | f 8ot 0yI(K . o(x, ¥, t, u))(Er)®-D(2, u) dt du,
e e 0<i, j<p—1, (212

where
Kpus(6,9,0) = (1 — Qey R, ) 1), 1= L.,p, (2.13)
Kiao(n,y,u) = (1 — Qe Q) R(p,w), k= L..,p, (214)
and
Ky (X, p, t,0) = (1~ Qo (R(x, 1) R(y, w)). (2.15)

We now state as lemma results proved in [11] which serve to bound the
kernels K, ,, and their first p — 1 derivatives in each variable.

LemMA 1. There exist constants M, independent of (x, y)€ % such that
forO<<i,j<p—1,(tueR
(i) |05 foxt oy Ky palx, ¥, 1)) < Mym? 15 n = 1,..., p,
(i) | 9¥9ext 8y Ko a,p(x, 3o )] < Myi? 3, k = Loy p,
(iii) | ") oxt 8y K, (X, y, t, u)| < Myl | = max{i, j}.
In addition for fixed (x, y) € %, K, n_1(x, ¥, t) is nonzero only on the interval

X, KT < Xphpg, | <n<p; Ky (x, ¥, u) is nonzero only on the interval
Vo St K Pyup, 1 <k <p;and K, ,(x, ¥, t,u) is nonzero only for values
(ta ll) € [xv E] xv+p~1] X [yu H yu+11~1]'

By Lemma 1 of [11], I7 5/ is the orthogonal projection of f onto $2?(%, =)
with respect to the norm obtained from the inner product (2.4). Thus

[Er, Er] < [Ef, Ef]. This, along with the Schwartz inequality and Lemma 1
above applied to (2.12) gives (2.6) and proves the theorem.
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3, CONVERGENCE OF SPLINE INTERPOLATION OVER L-SHAPED RE=GIONS

Let # be the L-shaped region with reentrant corner {(x, §) and other
corners at (g, ¢), (b, ), (b, B), (a, d), (=, d).
Let E be defined by

_ v on & I
Ef‘“ (Zf on R‘\\,—S’/’?, \3‘1
where
_(THP&JI)“L(I Tﬂp)- Tap'f’TPp}:
with
- Lm\'i
(1)) = ¥, gh() X0
i<p
Since

I _ o,

ent ent’

on ¢ N HR\ZF) and (Tf)»*) =0, it is clear that (3.1) defines a minima!l
exteasion for Z.
Thus

£, B = [ Lf 2o ) drdy + S [ oot sp d

)_-1 (’

n

+ ¥ [ rrere . e a (

i=1"c

(%)
o

where the X, are chosen from the interval [g, «] and the j; are chosen from
lc, 1.

The main result of the previous section was obtained by applying the
Schwartz inequality to the right hand side of (2.12). In this section we apply
appropriate Hélder inequalities to each term on the right hand side of (2.12)
individually. Thus by Lemma 1

T n
|| et 0y (K aa(x, s O)EN) PO (2. 5,) |
I e

<(p— DMt e o)l 1= L s (2.3}

f &4 Jox? OpI(Ky_y p(x, ¥, )Y Er)O® (%, , u) du H

\fig

©,Z
< (p - 1) lwzﬁp—j H ,.(O.p)(_)—'(k B u)[j:o > k= Ia”-s s (34}
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and

b ~d
f J ot+i[oxt oYKy, X, ¥, t, WWEr) ™ (¢, u) dt du
a c

1\
\oo,Z
< (p — D Mga® | r2 P by, = max{i,j}. (3.5)

THEOREM 2. Let f'o-9 e CZ), p = 2, 3. Then there exist constants K,
independent of = and f such that

P o, << K= [ £200 | 4 K2 | f020) | 0
+ K= max [| D(FO P, Yo,z
[ = max{i,j}, 0<i, j<p—1, (3.6)
where r =f — I? o f.

Proof. The proof consists of bounding the guantities || #»9(¢, ¥, ,
ilren(x, , e, and || 172 | 5 in terms of 7. First, on the line y =7, ,
I7 »f is identical to I? f(x, J',), the univariate spline interpolant to f(x, ¥,)
with respect to 77; . The results of de Boor [4] imply that for p = 2, 3,
ge CePg, b),

(g — 128 1 < K187 e » (3.7

where K, is independent of g and =, . The first two terms of the right side
of (3.6) follow immediately from the application of (3.7) to (3.3) and (3.4)
along with summation over # and k.

LemMmA 2. Let s, =I? of. For all s € S*"(Z, w)

” r(p’m ”L2($) < ”f(p,p) - S(p,p) ”LZ(“(?) (38)

with equality if and only if s = s; 4+ n where n*?) =0 on &,
Proof. LletveS?®(Z,n)and let

T =v— il L)X, y) — s{X;, »)] — i Zj(y)[y(x’ 5 — 5%, 7)1
+ i il LX) LN 72) — seZs > )1,

where the /,(x) and [,( ) are defined by (2.8) and (2.10). Thus, & agrees with s,
along the lines y = y; and x = X, . Also ¢'7?) = p'#:»_ Therefore

|2 — 00D g gy = [ PP gy = (F = 8, = D — (7D
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which is nonnegative with equality if and only if ¢ = 5, , since by Lemma !
of [12] and the discussion in Section 4 of [12], 5, is the orthogonal projection
of f onto S*H{.&, w) with respect to the norm | g [P = (g, g)« . Q.ED.

Lemma 2 implies that
(I:gf) (.0} __ Lf}gf (p.0} ,

where L2 ., is the linear projector on L3*( ¥} which associates with each
g € L¥&) its best approximation L? o g in $¥(%, =) with respect to the ncrm
| g l.2¢# . Rather than attempt to bound

{p.2) (p,p) - P
Hf S L.-Ir),g’f np J;\Lz(g) '\39}

directly in terms of 7%, we instead shall find it easier to bound

el
ot
[

W = Sligg, @.

where § is the quasi-interpolant of degree p — 1 to f'## as defined in 5L
The results of [5] imply that

[

Hf(p,p) — ¢ ”mf < Krgrﬁ_p }lmlax l Du(f(p,p)(x, )’))lx.,? X 310
ul=p

where K" is some constant independent of # and F®7). The last bound in

(3.6) now immediately follows with K, = (p — 1) M, & (mes{ &}, Q.E.D.

4. CONVERGENCE OF SPLINE INTERPOLATION OVER U-SHAPED REGIONS

The proof of Theorem 2 was facilitated by the fact that [[(Ef)# % [lrecp )
was zero. We next consider a U-shaped region, the simplest rectangular
polygon where this simplification does not occur.

Let % be the U-shaped region shown in Figure 1

a

B Ty ¥
[ ]
] 1
I 1
i 3

c re -

a 61 tx2 b
FiGure 1

Let E be defined by
_ f on #%
Ef {Hf on RW%,

oo~
:$.>.
T
Nomer”
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where

"(Halmgﬁol)T(]OTBp) ( a1a2ﬂ®TBﬂ)

where H, , ,g is the Hermite interpolating polynomial of degree 2p — 1
mterpolatmg ge CP Vo, an] at oy and oy .
By Theorem 3 of [8], Hf minimizes

[+7

[ [ o, e ds a,

a; Y8

among all functions v € RZ'? satisfying

ey @f o
ont - ont’ Osisp—1
on ¢# N o(R\%). Thus the left inverse F' of the extension E given by (4.1)
is norm reducing and thus F is a minimal extension for %.

With the X; chosen from [a, o] U [0y, b] and the §; chosen from [c, B];

we have
d

(B, Eo] =[], 1000Ce 9 dedy 4 [ [ 1000k 0P de dy

*

D b o a
+y f [ 0(x, FI dx + ¥ f WO, , Dy, (4.2)
j=1va im1ve

where
~d [P—1 p~1
[ { [ (5, P dxdy = [ 1T % yisalo o, y) 007, 3)]
o i=0 =0
»—1 p—1 ) )
42 z Z '}’i,j,l.z[vu’m(’xl , P09 (o, i3]
=0 j=0
p—1 p—1 Z
+ Z Z Vi salt P oy, ¥) 099y, y)] dy,
=0 j=0
(4.3)
where
Vs = { hP0G0) BN dix, s=1,2,
and

Yidie = J‘ h(p)()C) h(m(‘f) dx.

o,
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Here the £, , are the cardinal functions for Hermite interpolation, i.e.,
-1 ) p—1 )
H, o n8X) = 3, hia(6) 89() + 3 hi o) 89(o), g € CP Vs, 2]
i=0 i=0

The interpolation conditions which determine [, f, are given by (2.5).
For %, the {u;}7 can be chosen to include the set of functicnals

My=DE|Aed and 2C =X},

where Q0 = EF and Ff =f g .

The set %, includes the functionals associated with (i) interpolation to
values at each mesh point of %; (ii) interpolation to the first p — 1 normal
derivatives at each boundary mesh point of % which is alsc on the boundary
of R; (iii} interpolation to cross-derivatives at the corners of R.

Because of our assumption that dim S*(#%, =) <{ §*?(R, =). thers must
exist mesh points & ,..., £5,_5 such that

o <& < < By <o

The remaining interpolation conditions can be chosen to be the set of
functionals

My = {\E| ke An,
where
/j.]‘ - {85&1 ® Syj I (JZZ s y;) em, i= l,..., 2‘ - 2; ﬁ < ¥; < [«-"}
U {Smi Qg <x; <ogsf=0,.,p—1L

THEOREM 3. Let fe C'#0:20(%), p = 2, 3. Then there exisis a constant K
independent of = and f such that

W — 2afH) o

< K7t [Hf @2 oo A 1022 |l 20

1
i

»

SO g ot 2 F e T3
i=1

= max{i,j}, 0<i j<p—1 (44

Remark. Theorem 3 can be proved in much the same way as Theorem 2
except that for U-shaped regions J[(Er)'?? ||,+(z) does not simply reduce to
1 #%® i 2@ . To take care of this complication we have had to assume
more smoothness in f.
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Proof of Theorem 3. In the same way as for the L-shaped region, we
bound the terms on the right side of (2.12) individually. For each of the
terms in the two sums we again obtain the inequalities (3.3) and (3.4). The
quantities || r' 2O, P Ne, # = 1,...,p, and || r&P(X,, )l , kK = 1,..., p, can
be bounded in the same way as in the proof of Theorem 2. In place of (3.5)
we obtain for the U-shaped region

4
oHifoxt 9yI(K, (x, ¥, t, ))EF)?P (¢, u) dt du .i
¢ oo, %

< (0 — D) M@ [(Er)#® || oy, [ = max{i,j}.  (4.5)

It remains to obtain a suitable bound for |[(Er)\®? || s(z) .
The arguments used to prove Lemma 2 give the following:

LemMA 3. Let 85 == I7 o f. For all s € S*®(%U, )
lI(E(f— Sf))(p ) l'L’(R) S H(E(_f—' S))(p o HLZ(R) (46.)

with equality if and only if s = s; -+ v where (En){"? =0 on R.

Thus we can bound ||(Er)®-?) ||,2z) by obtaining an appropriate bound on

I f2m — 08 |2y + H — H)PP 2 (g, apixis,al) 5 “.7
where § = (Fqu ®F,,2) f, where F, g is the univariate quasi-interpolant of
degree 2p — 1 to g as defined in [S].

The results of [5] imply that for g € C2P)|q, b],

H g( (Fnlg)(l) “ao z_fcp ‘ ‘I g(‘)p) lleo,[a,p] » 0 < i < 2P - L (48)

where the C; are independent of g and for i <C p the C; are also independent
of 7, . The arguments used to establish this result actually establish that
for each x € [a, b]

190 — (Fo? (0] < Ca27 1189 s, 0<i<2p—1, (49

where I, is a uniformly small neighborhood of x. By an appropriate choice
of certain parameters, namely the 7;, in the formula for the quasi-inter-
polant, for all x € [a, b] the intervals /, will be contained in {a, b].

For (x, ) e

I(f = 9P (x, ) < A — F) HED (e, p)l + 1A — F,) S (x, p)l

+ (A — F) @ (L — F LN (x, y)l,
0<i j<p
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s
[ ]
(=l

From (4.9), one obtains

(1 — F) O (x, 1)) < CAP~5 |1 £, 3

by s

A —E)H% (6, ) < CAPT I £, s

and
(1 — F.) @A — EDL)E (x, )] < CCtomi7 | fEP | 4o

Again, by appropriate choice of the parameters, 7;, in the formula for the

3

guasi-interpolant, one has that for all (x, y)e %, I, x I, = %. Thus

(/= 9 e g < KT o + 15 loa + 17 BP0 )0 0],

0Li, j<p !=max{ij}, (410

where K’ is some constant independent of f and .

In (4.7), one is required to bound (f— §)-?X(x, y) on % and { f— §)% %0, , 1),
J=1,2;0<i<<p— 1, on [B, d]. The application of (4.10) to (4.7) along
with the previously established bounds on the single integral terms in {2.12)
leads to the estimate (4.4) and proves the theorem.

Remark. The techniques used to establish Theorems 2 and 3 can be used
to prove similar results for other simple rectangular polygons, for example
T- or H-shaped regions or regions similar to Fig. 4 of [12]. In fact these
results can easily be extended to include any rectangular polygon such that
the intersection with R\Z of thelinesx = X, i= 1.2,y =7F;,j =1..,p
in the norm for R%'? is null, and for which one can show that (Ef}»# on
R'\Z is either zero or can be expressed in terms of derivatives of fon .
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